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SOME FAMOUS PROBLEMS OF THE
THEORY OF NUMBERS.

^
.

IT is expected that a professor who delivers an inaugural
lecture should choose a subject of wider interest than those

which he expounds to his ordinary classes. . This custom is

entirely reasonable
;
but it leaves a pure mathematician

faced by a very awkward dilemma. There are subjects in

which only what is trivial is easily and generally compre-
hensible. Pure mathematics, I am afraid, is one of them ;

indeed it is more: it is perhaps the one subject in the

<3
world of which it is true, not only that it is genuinely

^ difficult to understand, not only that no one is ashamed of

. inability to understand it, but even that most men are

^Y* more ready to exaggerate than to dissemble their lack of

understanding.

There is one method of meeting such a situation which
L

is sometimes adopted with considerable success. The

lecturer may set out to justify his existence by enlarging

upon the overwhelming importance, both to his University

and to the community in general, of the particular studies on
* which he is engaged. He may point out how ridiculously

inadequate is the recognition at present afforded to them ;

how urgent it is in the national interest that they should be

largely and immediately re-endowed
;
and how immensely

all of .us would benefit were we to entrust him and his

colleagues with a predominant voice in all questions of

educational administration. I have observed friends of my
own, promoted to chairs of various subjects in various
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Universities, addressing themselves to this task with an

eloquence and courage which it would be impertinent in me

to praise. For my own part, I trust that I am not lacking

in respect either for my subject or myself. But, if I am
asked to explain how, and why, the solution of the pro-

blems which occupy the best energies of my life is of

importance in the general life of the community, I must

decline the unequal contest: I have not the effrontery to

develop a thesis so palpably untrue. I must leave it to the

engineers and the chemists to expound, with justly pro-

phetic fervour, the benefits conferred on civilization by

gas-e'ngines, oil, and explosives. If I could attain every

scientific ambition of my life, the frontiers of the Empire
would not be advanced, not even a black man would be

blown to pieces, no one's fortune would be made, and least

of all my own. A pure mathematician must leave to

happier colleagues the great task of alleviating the suffer-

ings of humanity.
I suppose that every mathematician is sometimes de-

pressed, as certainly I often am myself, by this feeling of

helplessness and futility. I do not profess to have any

very satisfactory consolation to offer. It is possible that

the life of a mathematician is one which no perfectly

reasonable man would elect to live. There are, however,

one or two reflections from which I have sometimes found

it possible to extract a certain amount of- comfort. In the

first place, the study of mathematics is, if an unprofitable,

a perfectly harmless and innocent occupation, and we have

learnt that il is something to be able to say that at any
rate we do no harm. Secondly, the scale of the universe

is large, and, if we are wasting our time, the waste of the

lives of a few university dons is no such overwhelming

catastrophe. Thirdly, what we do may -be small, but it

has a certain character of permanence ;
and to have pro-
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duced anything of the slightest permanent interest, whether

it be a copy of verses or a geometrical theorem, is to have

done something utterly beyond the powers of the vast

majority of men. And, finally, the history of our subject

does seem to show conclusively that it is no such mean

study after all. The mathematicians of the past have not

been neglected or despised ; they have been rewarded in a

manner, undiscriminating perhaps, but certainly not un-

generous. At all events we can claim that, if we are

foolish in the object of our devotion, we are only in our

small way aping the folly of a long line of famous men,

and that, in these days of conflict between ancient and

modern studies, there must surely be something to be said

for a study which did not begin with Pythagoras, and will

not end with Einstein, but is the oldest and the youngest

of all.

It seemed to me for a moment, when I was considering

what subject I should choose, that there was perhaps one

which might, in a philosophic University like this, be of

wider interest than ordinary technical mathematics. If

modern pure mathematics has any important applications,

they are the applications to philosophy made by the mathe-

.matical logicians of the last thirty years. In the sphere of

philosophy we mathematicians put forward a strictly

limited but absolutely definite claim. We do not claim

that we hold in our hands the key to all the riddles of

existence, or that our mathematics gives us a vision of

reality to which the less fortunate philosopher cannot

attain
;
but we do claim that there are a number of

puzzles, of an abstract and elusive kind, with which the

philosophers of the past have struggled ineffectually, and

of which we now can give a quite definite and explicit

solution. There is a certain region of philosophical terri-

tory which it is our intention to annex. It is a strictly
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demarcated region, but it has suffered under the misrule of

philosophers for generations, and it is ours by right ;
we

propose to accept the mandate for it, and to offer it the

opportunity of self-determination under the mathematical

flag. Such at any rate is the thesis which I hope it may
before long be my privilege to defend.

It seemed to me, however, when I considered the matter

further, that there are two fatal objections to mathematical

philosophy as a subject for an inaugural address. In the

first place the subject is one which requires a certain

amount of application and preliminary study. It is not

that it is a subject, now that the foundations have been

laid, of any extraordinary difficulty or obscurity ;
nor that

it demands any wide knowledge of ordinary mathematics.

But there are certain things that it does demand
;
a little

thought and patience, a little respect for mathematics, and

a little of the mathematical habit of mind which comes

fully only after long years spent in the company of mathe-

matical ideas. Something, in short, may be learnt in a

term, but hardly in a casual hour.

In the second place, I think that a professor should

choose, for his inaugural lecture, a subject, if such a subject

exists, to which he has made himself some contribution of

substance and about which he has something new to say.

And about mathematical philosophy I have nothing new to

.say; I can only repeat what has been said by the men,

Cantor and Frege in Germany, Peano in Italy, Russell and

Whitehead in England, who have originated the subject

and moulded it now into something like a definite form.

It would be an insult to my new University to offer it

a watered synopsis of some one else's work. I have there-

fore finally decided, after much hesitation, to take a sub-

ject which is quite frankly mathematical, and to give a

summary account of the results of some researches which,
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whether or no they contain anything of any interest or

importance, have at any rate the merit that they represent

the best that I can do.

My own favourite subject has certain redeeming advan-

tages. It is a subject, in the first place, in which a large

proportion of the most remarkable results are by no means

beyond popular comprehension. There is nothing in the

least popular about its methods', as to its votaries it .is the

most beautiful, so by common consent it is the most diffi-

cult of all branches of a difficult science
; but many of 'the

actual results are such as can be stated in a simple and

striking form. The subject has also a considerable historic

cal connexion with this particular chair. I do not wish to

exaggerate this connexion. It must be admitted that the

contributions of English mathematicians to the Theory of

Numbers have been, in the aggregate, comparatively slight.

Fermat was not an Englishman, nor Euler, nor Gauss, nor

Dirichlet, nor Riemann
;
and it is not Oxford or Cambridge,

but Gottingen, that is the centre of arithmetical research

to-day. Still, there has been an English connexion, and it

has been for the most part a connexion with Oxford and

with the Savilian chair.

The connexion of Oxford with the theory of numbers is

in the main a nineteenth-century connexion, and centres

naturally in the names of Sylvester and Henry Smith.

There is a more ancient, if indirect, connexion which I

ought not altogether to forget. The theory of numbers,

more than any other branch of pure mathematics, has

begun by being an empirical science. Its most famous

theorems have all been conjectured, sometimes a hundred

years or more before they have been proved; and they

have been suggested by the evidence of a mass of compu-
tation. Even now there is a considerable part to be

played by the computer ;
and a man who has to undertake
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laborious arithmetical computations is hardly likely to

forget what he owes to Briggs. However, this is ancient

history, and it is Avith Sylvester and Smith that I am
concerned to-day, and more particularly with Smith.

Henry Smith was very many things,'but above all things

a most brilliant arithmetician. Three-quarters of the first

volume of his memoirs is occupied with the theory of

numbers, and Dr. Glaisher, his mathematical biographer,

has observed very justly that, even when he is primarily

concerned with other matters, the most striking feature of

his work is the strongly arithmetical spirit which pervades

the whole. His most remarkable contributions to the

theory are contained in his memoirs on the arithmetical

theory of forms, and in particular in the famous memoir on

the representation of numbers by sums of five squares,

crowned by the Paris Academy and published only after

hjs death. This memoir is peculiarly interesting to me, for

the problem is precisely one of those of which I propose to

speak to-day ;
and I may perhaps add one comment on the

surprising history set out in Dr. Glaisher's introduction.

The name of Minkowski is familiar to-day to many, even

in Oxford, who have certainly never read a line of Smith.

It is curious to contemplate at a distance the storm of

indignation which convulsed the mathematical circles of

England when Smith, bracketed after his death with the

then unknown German mathematician, received a greater

honour than any that had been paid to him in life.

The particular problems with which I am concerned

belong to what is called the '

additive
'

side of higher
arithmetic. The general problem may be stated as follows.

Suppose that n is any positive integer, and

positive integers of some special kind, squares, for example,



or cubes, or perfect &th powers, or primes. We consider all

possible expressions of n in the form

n a
1 + a2 + "-+ a '

where s may be fixed or unrestricted, the a's may or may
not be necessarily distinct, and order may or may not be

relevant, according^
to the particular problem on which we

are engaged. We denote by

r (n)

the number of representations which satisfy the conditions

pf the problem. Then what can we say about r(n}1 Can

we find an exact formula for r (n), or an approximate formula

valid for large values of n ? In particular, is r(n) always

positive ? Is it always possible, that is to say, to find at

least one representation of n of the type required ? Or, if

this is not so, is it at any rate always possible when n is

sufficiently large ?

I can illustrate the nature of the general problem most

simply by considering for a moment an entirely trivial

case. Let us suppose that there are three different a's only,

viz. the numbers 1, 2, 3
;
that repetitions of the same a are

permissible ;
that the order of the a's is irrelevant

;
and

that s, the number of the a's, is unrestricted. Then it is

easy to see that r(ri), the number of representations, is the

number of solutions of the equation

n = x + 2y + 3z

in positive integers, including zero.

There are various ways of solving this extremely simple

problem. The most interesting for our present purpose is

that which rests on an analytical foundation, and uses the

idea of the generating function
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in which the coefficients are the values of the arithmetical

function r(n). It follows immediately from the definition

of r(ri) that

and, in order to determine the coefficients in the expansion,

nothing more than a little elementary algebra is required.

We find, by the ordinary theory of partial fractions, that

17

4(1 -a;)
2

72(1 -x)

__
"r -TTi rT '

9(1 -<ox) 9(l-o>
2
a;)

where o> and co
2 denote as usual the two complex cube roots

of unity. Expanding the fractions, and picking out the

coefficient of xn,
we obtain

(n + 3)
2 7 (-!) 2 2717T

r <
n

>
= - - + - + COS-'

It is easily verified that the sum of the last three terms

can never be as great as 5, so that r(ri) is the integer

nearest to
-

(n +3)
2

12

The problem is, as I said, quite trivial, but it is interest-

ing none the less. A great deal of work has been done

on problems similar in kind, though naturally far more

complex and difficult in detail, by Cayley and Sylvester,

for example, in jbhe last century, and by Glaisher, and

above all by Macmahon, in this. And even this problem,
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simple as it is, has sufficient content to bring out clearly

certain principles of cardinal importance.

In particular, the solution of the problem shows quite

clearly that, if we are to attack these ' additive
'

problems

by analytic methods, it is in the theory of integral power
eries

2n*H

that the necessary machinery must be found. It is this

characteristic which distinguishes this theory sharply from

the other great side of the analytic theory of numbers, the
'

multiplicative
'

theory, in which the fundamental idea is

that of the resolution of a number into primes. In the

latter theory the right weapon is generally not a power

series, but what is called a Dirichlet's series, a series of the

type

2 ann ~'-

It is easy to see this by considering a simple example.
One of the most interesting functions of the multiplicative

theory is d(ri), the number of divisors of n. The associated

power series

is easily transformed into the series

1

called Lambert's series. The function is an interesting

one, but somewhat unmanageable, and certainly not one of

the fundamental functions of analysis. The corresponding

Dirichlet's series is far more fundamental
;

it is in fact

the square of the famous Zeta function of Riemann.

A 4
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The underlying reason for this distinction is fairly

obvious. It is natural to multiply primes and unnatural

to add them. Now

rnr* x n~8 = (inn)'
8
,

so that, in the theory of Dirichlet's series, the terms

combine naturally with one another in a '

multiplicative
'

manner. But

Xm X 3C
n =

so that the multiplication of two terms of a power series

involves an additive operation on their ranks. It is

thus that the Dirichlet's series rather than the power
series proves to be the proper weapon in the theory of

primes.

It would be difficult for anybody to be more profoundly

interested in anything than I am in the theory of primes ;

but it is not of this theory that I propose to speak to-day,

and we must return to our general additive problem. As

soon as we try to specialize the problem in some more

interesting manner, two problems stand out as calling for

research. Each of them, naturally, is only the representa-

tive of a class.

The first of these problems is the problem, of partitions.

Let us suppose now that the a's are any positive integers,

and that (as in the trivial problem) repetitions are allowed,

order is irrelevant, and s is unrestricted. The problem is

then that of expressing n in any manner as a sum of

integral parts, or of solving the equation

n =

and r(n) or, as it is now more naturally written, p(n), is

the number of unrestricted partitions of n. Thus

5=1 + 1 + 1 + 1 + 1 = 1 + 1 + 1+2
= 1+2 + 2=1 + 1 + 3 = 2 + 3 = 1+4 = 5,
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so that p(5) = 7. The generating function in this case

was found by Euler, and is

1

I do not wish to discuss this problem in any detail

now, but the form of the generating function calls for

one or two general remarks. In the trivial problem the

generating function was rational, with a finite number of

poles all situated upon the unit circle. Here also we are

led to a power series, or infinite product, convergent inside

the unit circle; but there the resemblance ends. This

function will be recognized by any one familiar with the

theory of elliptic functions
;

it is an elliptic modular

function
; and, like all such functions, it has the unit circle

as a continuous line of singularities and does not exist at

all outside. It is easy to imagine the immensely increased

difficulties of any analytic solution of the problem.

It was conjectured by a very brilliant Hungarian

mathematician, Mr. G. P<51ya, five or six years ago, that

any function represented by a power series whose

coefficients are integers, and which is convergent inside

the unit circle, must behave, in this respect, like one or

other of the two generating functions which we have

considered. Either such a function is a rational function,

that is to say, completely elementary ;
or else the unit

circle is a line of essential singularities. I believe that a

proof of this theorem has now been found by Mr. F. Carlson

of Upsala, and is to be published shortly in the Mathe-

matische Zeitschrift. It is difficult for me to give reasoned

praise to. a memoir which I have not seen, but I can'

recommend the theorem to your attention with confidence

as one of the most beautiful of recent years.

The problem of partitions is one to which, in collaboration

with the Indian mathematician, Mr. S. Ramanujan, I have

A 5
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myself devoted a great deal of work. The principal result

of our work has been the discovery of an approximate

formula for p(n) in which the leading term is

2n

. * .^-*
dn

and which enables us to approximate to p(n) with an

accuracy which is almost uncanny. We are able, for

example, by using 8 terms of our formula, to calculate

^)(200), a number of 13. figures, with an error of -004.

I have set out the details of the calculation in Table I.

TABLE I

l>(200)

3,972,998,993,185-896

36,282-978

87-555

+ 5-147

+ 1-424

+ 0-071

+ 0-000

+ 0-043

3,972,999,029,388-004

The value of p(200) was subsequently' verified by Major

MacMahon, by a direct computation which occupied over

a month.

The formulae connected with this problem are very

elaborate, and except on the purely numerical side, where

the results of the theory are compared with those of com-

putation, it is not very well suited for a hasty expo-

sition ;
and I therefore pass on at once to the principal

object of my lecture, the very famous problem known,

after a Cambridge professor of the eighteenth century, as

Waring's Problem.
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We suppose now that every a is a perfect k-th power
mfc

,
k being fixed in each case of the problem which we

consider
;
m may be of either sign if k is even, but must

be positive if k is odd. In either case we allow m to be

zero. Repetitions are permitted, as in our previous problems ;

but it is more convenient now to take account of the order

of the a's
;
and s, which was formerly unrestricted, is now

fixed in each case of the problem, like k. The problem is

therefore that of determining the number of representations

of a number n as the sum of s positive k-th powers. Thus

Henry Smith's problem, the problem of five squares, is the

particular case of Waring' s problem in which A; is 2 and

s is 5. The problem has a long history, which centres

round this simplest case of squares ;
a history which began,

I suppose, with the right-angled triangles of Pythagoras,

and has been continued by a long succession of mathemati-

cians, including Fermat, Euler, Lagrange, and Jacobi, down

to the present day. I will begin by a summary of what

is known in the simplest case, where the solution is

practically complete.

A number n is the sum of two squares if and only if

it is of the form
n - M*P,

where P is a product of primes, all different and all of the

form 4&+1. In particular, a prime number of the form

4k +1 can be expressed as the sum of two squares, and

substantially in only one way. Thus 5 = !
2 +2 2

,
and there

is no other solution except the solutions (l} 2 + (2)2

( + 2)
2 + ( + I)

2
,
which are not essentially different, although

it is convenient to count them as distinct. The number of

numbers less than x, and. expressible as the sum of two

squares, is approximately
Cx

Vlogx
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where C is a certain constant. The last result was proved

by Landau in 1908
;

all the rest belong to the classical

theory.

A number is the sum of three squares unless it is of

the form

when it is not so expressible. Every number may be

expressed by four squares, and a fortiori by five or mpre.

It is this last theorem of Lagrange that I would ask you

particularly to bear in mind.

If s, the number of squares, is even and less than 10,

the number of representations may be expressed in a very

simple form by .means of the divisors of n. Thus the

number of representations by 4 squares, when n is odd, is

8 times the sum of the divisors of n; when n is even, it

is 24 times the sum of the odd divisors; and there are

similar results for 2 squares, or 6, or 8.

When s is 3, 5, or 7, the number of representations can

also be found in a simple form, though one of a very

different character. Suppose, for example, that s is 3. The

problem is in this case essentially the same as that of

determining the number of classes of binary arithmetical

forms of determinant n; and the solution depends on

certain finite sums of the form

2A 2r.

extended Over quadratic residues /3 or non-residues y of n.

When s, whether even or odd, is greater than 8, the

solution is decidedly more difficult, and it is only very

recently that a uniform method of solution, for which I

must refer you to some recent memoirs of Mr. L. J. Mordell

and myself, has been discovered. For the moment I wish

to concentrate your attention on two points : the first, that

an expression by 4 squares is ahvays pomhle, while one
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lyy 3 is not
;
and the second, that the existence of numbers

not expressible by 3 squares is revealed at once by the quite

trivial observation that no number so expressible can be

congruent to 7 to modulus 8.

It is plain, when we proceed to the general case, that

any number 11 can be expressed as a sum of k-th powers ;

we have only to take, for example, the sum of n on/3S. And,

when 7i is given, there is a minimum number of k-th

powers in terms of which n can be expressed ; thus

23 =

is the sum of 9 cubes and of no smaller number. But it is

not at all plain (and this is the point) that this minimum

number cannot tend to infinity with /*. It does not when

k = 2
;
for then it cannot exceed 4. And Waring's Problem

(in the restricted sense in which the name has commonly
been used) is the problem of proving that the minimum

number is similarly bounded in the general case. It is not

an easy problem ;
its difficulty may be judged from the fact

that it took 127 years to solve.

We may state the problem more formally as follows.

Let k be given. Then there may or may not exist a

number m, the same for all values of n, and such that

n can always be expressed as the sum of m k-th powers or

less. If any number m possesses this property, all larger

numbers plainly possess it too
;
and among these numbers

we may select the least. This least number, which will

plainly depend on k, we call g(k) ;
thus g(k) is, by defini-

tion, the least number, if such a number exists, for which

it is true that

'

every number is tfie sum of g (k) k-th powers or less '.

We have seen already that g(2) exists and has the value 4.

In the third edition of his Meditationes Algebraicae,

published in Cambridge in 1782, Waring asserted that
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every number is the sum of not more than 4 squares, not

more than 9 cubes, not more than 19 fourth powers, et sic

deinceps. A little more precision would perhaps have

been desirable
;
but it has generally been held, and I do

not question that it is true, that what Waring is asserting

is precisely the existence of g(k). He implies, moreover,

that y(2) 4 and </(3)
= 9

;
and both of these assertions

are correct, though in the first he had been anticipated by

Lagrange. Whether <y(4) is or is not equal to 19 is not

known to-day.

Waring advanced no argument of any kind in support
of his assertion, and it is in the highest degree unlikely

that he was in possession of any sort of proof. I have no

desire to detract from the reputation of a man who was

a very good mathematician if not a great one, and who
held a very honourable position in a University which not

even Oxford has persuaded me entirely to forget. But

there is a tendency to exaggerate the profundity implied

by the enunciation of a theorem of this particular kind.

We have seen this even in the case of Fermat, a mathe-

matician of a class to which Waring had not the slightest

pretensions to belong, whose notorious assertion concerning
'

Mersenne'g numbers '

has been exploded, after the lapse of

over 250 years,by the calculations of the American computer
Mr. Powers. No very laborious computations would be

necessary to lead Waring to a highly plausible speculation,

which is all I take his contribution to the theory to be
;

and in the Theory of Numbers it is singularly easy to

speculate, though often terribly difficult to prove ;
and it

is only proof that counts.

The next advance towards the solution of the problem
was made by Liouville, who established the existence of

</(4). Liouville's proof, which was first published in 1859,

is quite simple and, as the simplest example of an important
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type of argument, is worth reproducing here. It may be

verified immediately that

+ (x + z)* + (x-z)* + (t + y)*+(t- y)
4

+ (x + t)
4 + (xt)* + (y + z)

4 + (y z)* ;

and since, by Lagrange's theorem, any number X is the

sum of 4 squares, it follows that any number of the form

6X2
is the sum of 12 biqu,adrates. Hence any number of

the form 6(X
2 + Y 2 +Z2 + T2

) or, what is the same thing,

any number of the form 6 m, is the sum of 4 8 biquadrates.

But any number n is of the form 6m + r, where r is

0,1, 2, 3, 4, or 5. And therefore n is, at worst, the sum

of 53 biquadrates. That is to say, #(4) exists, and does

not exceed 53. Subsequent investigators, refining upon this

argument, have been able to reduce this number to 37; the

final proof that (/(4) 5^ 37, the most that is known at present,

was given by Wieferich in 1 909. The number

79 = 4-2 4 +15-l 4

needs 1 9 biquadrates, and no number is known which needs

more. There is therefore still a wide margin of uncertainty

as to the actual value of (/(4).

The case of cubes is a little more difficult, and the

existence of g(3) was not established until 1895, when
Maillet proved that </(3) ^17. The proof then given by
Maillet rests upon the identity

and the known results concerning the expression of a

number by 3 squares. It has not the striking simplicity

of Liouville's proof ;
but it has enabled successive investi-

gators to reduce the number of cubes, until finally Wieferich,
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in 1909, proved that #(3)
< 9. As 23 and 239 require

9 cubes, the value of g(3) is in fact exactly 9. It is only

for k = 2 and k = 3 that the actual value of g(k) has

been determined. But similar existence proofs were found,

and upper bounds for g (k) determined, by various writers,

in the cases k = 5, 6, 7, 8, and 10.'

Before leaving the problem of the cubes I must call your
attention to another very beautiful theorem of a slightly

different character. The numbers 23 and 239 require

9 cubes, and it appears, from the results of a survey of

all numbers up to 40,000, that no other number requires so

many. It is true that this has not actually been proved ;

but it has been proved (and this is of course the essential

point) that the number of numbers which require as many
cubes as 9 is finite.

This singularly beautiful theorem, which is due to my
friend Professor Landau of Gottingen, and is to me as

fascinating as anything in the theory, also dates from

1909, a year which stands out for many reasons in the

history of the problem. It is of exceptional interest not

only in itself but also on account of the method by which

it was proved, which utilizes some of the deepest results in

the modern theory of the asymptotic distribution of primes,

and made it, until very recently, the only theorem of its

kind erected upon a genuinely transcendental foundation.

To me it has a personal interest also, as being the only
theorem of the kind which, up to the present, defeats

the new analytic method by whieh Mr. Littlewood and

I have recently studied the problem.

Landau's theorem suggests the introduction of another

function of k, which I will call G(k), of the same general

character as g(k), but I think probably more fundamental.

This number G (k) is defined as being the least number for

which it is true that
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'

every member FROM A CERTAIN POINT ONWARDS is the

sum of G (k) k-th povjers or less.'

It is obvious that the existence of g(k) involves that of

G(k), and that G (k) ^ g(k). When k 2, both numbers

are 4
;
but G(3) <

8, by Landau's theorem, while #(3) = 9;

and doubtless G(k) < g(k) in general. It is important also

to observe that, conversely, the existence of G(k) involves

that of g(k). For, if G(k) exists, all numbers beyond a

certain limit y are sums of G(k) k-th powers or less. But

all numbers less than y are sums of y ones or less, and there-

fore g(k) certainly cannot exceed the greater of G(k) and y.

I said that G(k) seemed to me the more fundamental of

these numbers, and it is easy to see why. Let us assume

(as is no doubt true) that the only numbers which require

9 cubes for their expression are 23 and 239. This is a very

curious fact which should be interesting to any genuine

arithmetician
;
for it ought to be true of an arithmetician

that, as has been said of Mr. Ramanujan, and in his case

at any rate with absolute truth, that 'every positive integer

is one of his personal friends'. But it would be absurd to

pretend that it is one of the profounder truths of higher

arithmetic : it is nothing more than an entertaining arith-

metical fluke. It is Landau's 8 and not Wieferich's 9 that

is the profoundly interesting number.

The real value of G(3) is still unknown. It cannot be

less than 4 : for every number is congruent to 0, or 1, or

1 to modulus 3, and it is an elementary deduction that

every cube is congruent to 0, or 1, or 1 to modulus 9.

From this it follows that the sum of three cubes cannot be

of the form 9m + 4 or 9m + 5 : for such numbers at least

4 cubes are necessary, so that $(3) ^ 4. But whether

(r(3) is 4, 5, 6, 7, or 8 is one of the deepest mysteries

of arithmetic.

It is worth while to glance at the evidence of computation.
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Dase, at the instance of Jacobi, tabulated the minimum

number of cfibes for values of n from 1 to 12,000, and Dau-

. blensky von Sterneck has extended the table to 40.000.

Some of the results are shown in Table II.

TABLE II
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of the probable truth, without any superhuman patience,

by exploring a selected stratum of much larger numbers.

Dr. Ruckle of Gottingen recently undertook this task at

my request, and I am glad to be able to tell you his

results. He found, for the 2,000 numbers immediately

below 1,000,000, the following distribution.

123 4 567
998000-999000 1 98 640 262 1

999000-1000000 1 1 94 614 289 1

You will observe that the 6-cube numbers have all but

disappeared, and that there is a quite marked turnover

from 5 to 4. Conjecture in such a matter is extremely

rash, but I am on the whole disposed to predict with some

confidence that G (3) ^5. If I were asked to choose between

5 and 4, all I could say would be this. That G(3) should

be 4 would harmonize admirably, so far as we can see

at present, with the general trend of Mr. Littlewood's and

my researches. But it is plain that, if the 5-cube numbers

too do ultimately disappear, it can only be among numbers

the writing of which would tax the resources of the decimal

notation
;
and at present we cannot prove even that Cr(3)

<
7,

though here success seems not impossible. .

With the fourth powers or biquadrates we have been

very much more successful. I have explained that gr(4)

lies between 19 and 37. As regards G(4), we have here no

numerical evidence on the same scale as for cubes. Any
fourth power is congruent to or 1 to modulus 16, and

from this it follows that no number congruent to 15 to

modulus 16 can be the sum of less than 15 fourth powers.

Thus (r(4) ^ 15; and Kempner, by a slight elaboration of

this simple argument, has proved that (r(4) j> 16. No
better upper bound was known before than the 37 of

Wieferich, but here Mr. Littlewood and I have been able
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to make a very substantial improvement, first to 33 and

finally to 21. Thus G(4) lies between 16 and 21, and

the margin is comparatively small.

I turn now to the general case. In the years up to

1909, the existence proof was effected, and upper bounds

for g(k) determined, for the values of k from 2 to 8 in-

clusive and for k = 10. These upper bounds are shown

in the first row of Table III; that for 10, which is not

included, is somewhere in the neighbourhood of 140,000.

TABLE III.'234567 849 37 58 478 3806 31353

[()*] + 2*-2= 49 19 37 73 143 279

G(k)< 4 [8] 37 58 478 3806 31353

^ (k -2)2*-' + 5 = (5) (9) 21 53 133 325 773

k 4 4 16 6 7 8 32

In the second row I have shown the best known lower

bounds, which are given by the simple general formula

which stands to the left, in which [(%)
k
] denotes the

integral part of (f)
fc

. It is easily verified, in fact, that

the number

which is less than 3&
, requires the number of fc-th powers

stated.1 It will be observed that the first three numbers

are those which occur in Waring's enunciation.

Waring's problem, as I have defined it the problem,

that is to say, of finding a general existence proof

for g(k), and a fortiori for G(k) was ultimately solved

by Hilbert, once more in 1909. I wish that I had time

to give a proper account of his justly famous memoir,

which raised the whole discussion at once on to an

1 This observation was made by Bretschneider in 1853.
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altogether higher level. As it is, I must confine myself
to one or two extremely inadequate remarks. The

proof falls into two parts. The first part is what I may
call semi-transcendental. It is not fully transcendental in

the sense in which, for example, the classical proofs in the

theory of the distribution of primes are transcendental, for

it does not make use of the machinery of the theory of

analytic functions of a complex variable
;
but it uses the

methods of the integral calculus, and is therefore not

fully elementary. Hilbert set out with what would appear
at first sight to be the singularly ill -adapted weapon of

a volume integral in space of 25 dimensions, a number

which he was afterwards able to reduce to 5. The formula

which he ultimately used is

= G
\\\\\ (^1 +^2 + ^3

where C is a certain constant, viz.

and the integration is effected over the interior of the

hypersphere

tf+v+yttfttfr'
1

Starting from this formula he was able, by an exceed-

ingly ingenious process based upon the definition of a

definite integral as the limit of a finite sum. to prove

the existence in the general case of algebraical identities

analogous to that used by Liouville and his followers

when k is 4. It should be observed that Hilbert's

proof is essentially an existence proof; his method is

not effective for the actual determination of these identities
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even in the simplest cases. The identities which are known

for special values of k have been obtained by common

algebra, and are, after the first few values of k, excessively

complicated. The simplest known identity for k = 10, for

instance, is

22680 fa* + X* + x^ + Z4
2
)

5

(8) (48)

(12) (4)

where the figures in brackets show the number of terms

under the signs of summation. However, the identities

exist
;
and it should be clear to you, after our discussion of

the case k 4, that they enable us at once to obtain a

proof in succession for k 2, 4, 8, 16. ... and generally

whenever k is a power of 2. This concludes the first and

most characteristic part of Hilbert's argument. The second

part, in which the conclusion is extended to every value of

k, is purely, algebraical.

Hilbert's work has been reconsidered and simplified by
a number of writers, most notably by Dr. Stridsberg of

Stockholm, and the ultimate result of their work has been

to eliminate the transcendental elements from the proof

entirely. The proof, as they have left it, is fully elemen-

tary ;
it does not involve any reference to integrals, or to

any kind of limiting process, but depends simply on an

ingenious system of equations derived byt
the processes of

finite algebra. It remains a pure existence proof, and

throws no light on the value of g(k).

It would hardly be possible for me to exaggerate the

admiration which I feel for the solution of this historic

problem of which I have been compelled to give so bald
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and summary a description. Within the limits which it

has set for itself, it is absolutely and triumphantly success-

ful, and it stands with the work of Hadamard and de la

Valle'e-Poussin, in the theory of primes, as one of the land-

marks in the modern history of the theory of numbers.

But there is an enormous amount which remains to be

done, and it would seem that, if we are to interpret

Waring's problem in the widest possible sense, if we are to

get into real contact with the actual values of our numbers

g(k) and G(k), still more if we are to attack all the obvious

problems connected with the number of representations,

then essentially different and inherently more powerful
methods are required. There is one armoury only in which

such more powerful weapons can be found, that of the

modern theory of functions. In short we must learn how

to apply Cauchy's Theorem to the problem, and that is

what Mr. Littlewood and I have set out to do.

The first step is fairly obvious. The formulae are

slightly simpler when k is even. The number of represen-

tations of n as the sum of s kth powers, which we may
denote in general by

'X*(''
l
)>

is then the coefficient of xn in the generating function

where

f(x)= l +

This formula involves certain conventions as to the order

and sign of the numbers which occur in the representations

which are to be reckoned as distinct
;
but the complications

so introduced are trivial and I need not dwell on them.

The series is convergent when \x\< 1, and, by Cauchy's
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Theorem, we have

the path of integration being a circle whose centre is at

the origin and whose radius is less than junity.

All this is simple enough ;
but the further study of the

integral is very intricate and difficult, and I cannot attempt
to do more than to give a rough idea of the obstacles that

have to be surmounted. Let us contrast the integral for a

moment with that which would stand in its place in the
'

trivial
'

problem to which I referred early in my lecture.

There the subject of integration would be a rational func-

tion, with a finite number of poles all situated on the unit

circle. We could deform the contour into one which lies

wholly at a considerable distance from the origin and in

which, owing to the factor <e
w+1 in the denominator, every

element is very small when ii is large. We should have,

of course, to introduce corrections corresponding to the

residues at the poles ;
and it is just these corrections which

would give the dominant terms of an approximate formula

by means of which our coefficients could be studied. In

the present case we have no such simple recourse; for

every point of the unit circle is a singularity of an exceed-

ingly complicated kind, and the circle as a whole is a

barrier across which it is impossible to deform the contour.

It is of course for this reason that no successful application

of the method has been made before.

Our fundamental idea for overcoming the difficulty is

as follows. Among the continuous mass of singularities

which covers up the circle, it is possible to pick out a class

which to a certain extent dominates the rest. These special

singularities are those associated with the rational points

of the circle, that is to say, the points

x =
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where p/q .is a rational fraction in its lowest terms. This

class of points is indeed an infinite class
;
but the infinity

is, in Cantor's phrase, only an enumerable infinity; and

the points can therefore be arranged in a simply infinite

series, on the model of the series

011*2131234151
1> 2> 5> 3"> ~S> 4J ~5> ' > Jf> ^' ' T "

In the neighbourhood of these points the behaviour of the

function is, sufficiently complex indeed, but simpler than

elsewhere. The function has, to put the matter in a rough
and popular way, a general tendency to become large in

the neighbourhood of the unit circle, but this tendency is

most pronounced near these particular points. They are

not only the simplest but also the heaviest singularities;

their weight is greatest when the denominator q is smallest,

decreases as q increases, and. (as a physicist would say)

becomes infinitely small when q is infinitely large. There

is, therefore, at any rate, the hope that we may be able to

isolate the contributions of each of these selected points,

and obtain, by adding them together, a series which may
give a genuine approximation to our coefficient.

I owe to Professor Harald Bohr of Copenhagen a

picturesque illustration which may help to elucidate the

general nature of our argument. Imagine the unit circle

as a thin circular rail, to which are attached an infinite

number of small lights of varying intensity, each illumi-

nating a certain angle immediately in front of it. The

brightest light is at x = 1, corresponding to p = 0, q = 1
;

the next brightest at x= 1, corresponding to p 1,

q = 2
;
the next at x = e

2ir '/3 and e47ri/3 ,
and so on. We

have to arrange the inner circle, the circle of integration,

in the position of maximum illumination. If it is too far

away the light will not reach it
;
*if too near, the arcs

which fall within the angles of illumination will be too
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narrow, and the light will not cover it completely. Is it

possible to place it where it will receive a satisfactorily

uniform illumination ?

The answer is that this is only possible when A- is 2.

Our functions are then elliptic functions
;
the lights are the

formulae of the theory of linear transformation ; and we

can find a position of the inner circle in which it falls

entirely under their rays. We are thus led to a solution of

the problem of the squares which is in all essential respects

complete. But when k exceeds 2 the result is less satisfac-

tory. The angle of the lights is then too narrow; the

beams which they emit, instead of spreading out with

reasonable regularity, are shaped like torpedoes or cigars ;

however we move our circle a part remains in darkness.

It would seem that this difficulty, which held up our

researches for something like two years, is the really

characteristic difficulty of the general problem. It cannot

be solved until we have found some other source of light.

It was only after the most prolonged and painful efforts

that we were able- to discover such another 'sourc*e. It is

possible not oqly to hang lights upon the rail, but also, to

a certain extent, to cause the rail itself to glow. The

illumination which can be induced in this manner is irri-

tatingly faint, and ft is for this reason that our results are

not yet all that we desire
;
but it is enough to make the

dark places dimly visible and to enable us to prove a great

deal more than has been proved before.

The actual results which we obtain are these. We find

that there is a certain series, which we call the singular

series, which is plainly the key to the solution. This

series is
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where

5-1

a sum which reduces, when k = 2, to one of what are

known as ' Gauss's sums
' and the summation extends,

first to all values of p less than and prime to q, and

secondly to all positive integral values of q. The genesis

of the series is this. We associate with the rational point

x e2piri/q an auxiliary power series

fp,q(
X

) 2 C
P.. najrt'

n

which (a) is as simple and natural as we can make it, and

(6) behaves perfectly regularly at all points of the unit circle

except at the one point with which we are particularly con-

cerned. We then add together all these auxiliary functions,

and endeavour to approximate to the coefficient of our original

series by summing the auxiliary coefficients over all values

of p and q. The process is, at bottom, one of 'decom-

position into simple elements ', applied in an unusual way.
Our final formula for the number of representations is

the second term denoting an error less than a constant

multiple of nff

,
and a- being a number which is less 'than

1 at any rate for sufficiently large values of s. The
K

second term is then of lower order than the first. Further,

the first term is real, and it may be shown, if s surpasses

a certain limit, to be positive. If- both these conditions

are satisfied, and n is sufficiently large, then TJ. s (n)
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cannot be zero, and representations of n by s kth powers

certainly exist. The way is thus open to a proof of the

existence of G(k); if G(k) exists, so also does g(k), and

Waring's problem is solved.

The structure of the dominant term in our general

formula is best realized by considering some special cases.

In Table IV I have written out the leading terms of S,

TABLE IV.

k=2.

1 \ 2* s+1

2(2 /4 \)+ -< COS - 717T + COS I
- I17T S7T)> +0 + ....

5* (5 V5 /)

k 3, s = 7.

= 1 + 0-610 cos f 717T + 0-130 cos f T17T + 0-078 cos fmr+ ... .

k = 4, 8= 33.

= 1 + 1-054 cos (fiiTT- 3^77-) + 0-147 cos (%mr |TT) + ... .

k = 4, s = 21.

= 1 + 1-331 cos (nTr + #sir) + 0-379 cos ($mr-%7r) + ....

first when k = 2 and s is arbitrary, and then for 7

cubes and for 33 and 21 biquadrates. There are certain

characteristics common to all these series. The terms

diminish rapidly; in each case only a very few are of real

importance : and they are oscillatory, with a period which

increases as the amplitude of the oscillations decreases.

The series for the cubes is easily shown to be positive;

but we cannot deduce that r
3 -,(n) is positive, and draw

consequences as to the representation of numbers by 7 cubes,
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because in this case we cannot dispose satisfactorily of the

error term (n
a
)

in the general formula. In the two

cases relating to fourth powers which I have chosen, the

discussion of the series itself is rather more delicate, for

there is in each of them one term which can be negative

and greater than 1. But the discussion can be brought to

a satisfactory conclusion, and, as in this case we are able

to prove that the error term is really of lower order, we
obtain what we desire. Every large number is the swm, of

21 fourth pmvers or less; 6r(4) ^ 21. Further, we have

obtained a genuine asymptotic formula for the number

of representations, whiqh can be used for the study of the

representations of numbers of particular forms. We can

show, for example, that a large number of the form

16n+ 10 can be expressed by 21 biquadrates in about 200

times more ways than one of the form 16^ + 2.

If the method of which I have tried to give some general

idea is compared with those which have previously been

applied to the problem, it will be found that it has three

very great advantages. In the first place it is inherently

very much more powerful. It brings us for the first time

into relation with the series on which the solution in the

last resort depends, and tells us, approximately but truly,

what the number of representations really is. Secondly, it

gives us numerical results which, as soon as k exceeds 3, are

far in advance of any known before. These numbers

are those in the fourth row of Table III.1 It will be seen

that these numbers conform to a simple law, and that is

the third advantage of the method, that it is not a mere

1 The thick type indicates a new result. The (5) and (9) in round

brackets are inferior to results already known. Our method is easily

adapted to deal with the case k = 2 completely ;
but it will not at

present yield Landau's 8, which is therefore enclosed in square
brackets.



34

existence proof, but gives us a definite upper bound for G (k)

for all values of k, viz.

In the last row of the table I have shown all that is known

about G(k) on the other side. In all cases G(k) ^ k+l,
while if fc is a power of 2 we can say more, namely that

G(k) ^ 4&. A comparison between this row of figures and

that above it is enough to show the room which remains

.for further research. It is beyond question that our

numbers are still very much too large ; and there is no

sort of finality about our researches, for which the best

that we claim is that they embody a method which opens

the door for more.

I will conclude by one word as to the application of

our method to another and a still more difficult problem.

It was asserted by Goldbach in 1742 that every even num-

ber is tlie sum of two odd primes. Goldbach's assertion

remains unproved ;
it has not even been proved that every

number n is the sum of 10 primes, or of 100, or of any number

independent of n. Our method is applicable in principle to

this problem also. We cannot solve the problem, but we

can open the first serious attack upon it, and bring it into

relation with the established prime number theory. The

most which we can accomplish at present is as follows.

We have to assume the truth of the notorious Riemann

hypothesis concerning the zeros of the Zeta-function, and

indeed in a generalized and extended form. If we do this

we can prove, not Goldbach's Theorem indeed, but the next

best theorem of the kind, viz. that every odd number, at any
rate from a certain point onwards, is the sum of three odd

primes. It is an imperfect and provisional result, but it is

the first serious contribution to the solution of the problem.

1-3 75 S 6



POSTSCRIPT

Srinivasa Ramanujan, F.R.S., Fellow of Trinity

College, Cambridge, died in India on April 26, 1920,

aged 32.

An account of his life and mathematical activities

will be published in Vol. 19 of the Proceedings of

the London Mathematical Society.
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